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We study the large-time asymptotic solutions of the generalized Smoluchovski equations for class I
and class II coagulation systems. It is found that, in gelling and nongelling systems of class I, the general
solution ¢, () approaches for t — o the exact solution Cb, /¢ (k finite), where the b, are independent of
the initial conditions ¢;(0) and can be determined from a recursion relation. In class II systems, if the k
and ¢ dependence of c,(t) factorizes for large time, i.e., ¢, (2)—c,(2)b; (t— oo,k finite), then the b,
(~k~7) can be obtained from a recursion relation. We show that if ¢, (#) is factorizable at large time,
then the scaling function method and the recursion relation method give the same result for the 7 ex-

ponent for the class II systems.

PACS number(s): 05.40.+j, 68.70.+w, 03.20.+1i, 05.20.Dd

I. INTRODUCTION

The kinetics of irreversible aggregation and clustering
phenomena, in particular the time evolution of cluster
size distribution ¢, (¢) has been studied extensively by us-
ing the Smoluchovski coagulation equation [1-7]

©
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where the coagulation kernel K (i,j) represents the rate
coefficient for a specific clustering mechanism between
clusters of sizes i and j. The large-time asymptotic
behavior of the Smoluchovki equation has been studied
for the following homogeneous kernels

K (ai,aj)=a*K (i,j) , 2)

K (i,j)=i*j>, j>i, A=p+v, (3)

K(x,1—x)=xP[1+kx¥*+---], x>0, w'>0. (4

To study long-time properties, two different methods
have been used in literature. One is the scaling function
method [4,5] the other is the recursion relation method
[6,7]. The scaling function method describes the dom-
inant time dependence at large ¢, whereas the recursion
relation method gives the limiting behavior ¢, (¢)/c(t) as
t— oo, but not the approach toward this behavior. It is
found that for nongelling class I systems, the large-time
behavior predicted from the recursion relation method is
in agreement with the results of the scaling function
method. However, for general class II systems, the two
methods seem to lead to different results [8].

Recently, the generalized Smoluchovski equation
(GSE) has been introduced to study the n-tuple coagula-
tion in some idealized dense gas systems, from a mean-
field point of view [9—-11]. The GSE is given by
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il n—1

where the coagulation kernel K (i,,i,, . ..,i,) represents
the rate coefficient for a specific aggregation mechanism
among n clusters of sizes i,,i,,..,i,_, and i,. Their
determination depends on the very particular model of
the molecular process involved, and may be obtained by
using the relevant fluid theories for some simplified model
systems. In the real coagulation system, if the probability
of many-body collision is appreciable one should consider
a combined n-tuple coagulation processes with all possi-
ble n >2. The GSE is used to study an isolated many-
body coagulation, which is assumed to be the dominant
process in the real systems, under favorable conditions.
It is found that, when special reaction kernels are consid-
er, GSE can be studied by the standard methods
developed for the Smoluchovski equation, and its solu-
tions exhibit properties quantitatively similar to those of
the Smoluchovski equation. However, it appears to be
difficult to study the GSE for general reaction kernels.
So, in this work, we restrict ourselves to the homogene-
ous kernels.

The purpose of this paper is (1) to study the large-time
behavior of GSE for general homogeneous kernels of
nongelling class I and class II systems by using the recur-
sion relation method and (2) to show that the recursion
relation method and scaling function method give com-
plementary conclusions for class II systems. Our conjec-
ture is that since the scaling theory shows that the k and ¢
dependence of ¢, (t) factorizes as t— o for class I and
class II systems [4], then the recursion relation method
applies and the 7 exponent, defined as c;(¢#)~c(t)k 7,
calculated from those two methods should be the same.
Thus, combining the results of two different methods we
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have

1+A, class I

T=114+A/2, class II, ©)

for nongelling systems.

The paper is organized as follows. In Sec. II, we derive
the recursion relation from the generalized Smoluchovski
equation and show that if the cluster size distribution
¢, (2) can factorize at large time, then the recursion rela-
tion describes their large-time behavior. In Sec. II, we
discuss the large-time behavior from the recursion rela-
tion for class I and class II systems. In Sec. IV, we con-
clude the work by discussing the conjecture, which states
that the large-time behavior predicted from two different
methods are the same.

II. DERIVATION OF THE RECURSION RELATION

In this section we derive the recursion relation from
the generalized Smoluchovski Eq. (5) for the following
homogeneous kernels

K(aiy,ai,, ... ai,)=a*K(iy,iy, ... 0,),
i, )ik, (7)

yig—1>>i0,, A=(n—1)v+ul,

K(il,iz, P ,l‘”)z(iliz cte

[il’iZ’ “ee

which represent reaction rates among n—1 large and
small clusters, and are closely related with the standard
classification for binary reaction kernel. In fact, this ker-
nel reduces to the binary reaction kernel for standard
Smoluchovski equation if one lets n =2. As in the stan-

equation, we define that u>0 corresponds to class I,
©=0 to class II, and u <0 to class III. Note that there
are two physical restrictions on the exponents: For n
large interpenetrable clusters K (j,7,...,j)~j" which is
an upper bound for all K (j,j,...,j) as j— o, and thus
A=<n. Since a j-mer contains at most j monomers, it is
required that v=<1. There is no restriction imposed on u
except u<A—(n—1)v. In class I and III, the rate con-
stants for reactions of one large sample with other n —1
small and large samples are dominant, respectively. In
class II, the reaction rates are the same for large-large
and large-small clusters reactions. Nongelling systems
correspond to A<n—1, and gelling systems to n—1
<AZn[911].

First we consider the gelling systems, for which there
exists a special postgel solution ¢, (¢)=c,(#)b,. It can be
shown that the size distribution in gelling systems exhib-
its universal behavior, independent of the initial distribu-
tion ¢, (0), namely it approaches the special solution in
the following sense

lim ¢ (t)/c,(t)=b; , (8)
t— o
where b, (k=1,2,...,) are bounded positive numbers
with b, =1.

Since GSE admits an exact solution with a simple time
dependence [11]

ce()=cy(t)/[1+B(t—1t )]V " V=b,c,(1), ©

where b, =c,(t,)/c(t,) are positive numbers and 3 and
t, unknown constants, which are related with a set of ini-
tial conditions ¢, (0). Inserting this solution into Eq. (6)

dard scaling theory for the Smoluchovski coagulation yields
J
B by 1 .o .
-_—=— K(ij,iyy...,i,)b; b; *-*b;
n—1 c(z)"! 11+i2+§-+1 7 nhTR "
by S
—m ) z K(ll,lz,--,ln_l,k)bilbiz"'bin_l . (10)
11,12,...,1,1__1—1
By using Eq. (10) for £ =1, we can eliminate the unknown constant 3
B bhh_____ b s Kl(iy,i iy_1,k)b; b, b (11)
_ -1 _ 1l oo eslp—1» i Oi " 0;
n—1 ¢ ()" (n—1) iyigs iy =1 " th -1
or
_(n—Dey(e ) < o :
SV OIS 12
1l sy —y ~
Thus, the recursion relation is given by
_ 1 .. .
R(bk):;“! o > o K(iy,ig; e vsiy)b; by oo b;
iy tiy+ -+, =k
by z . . .
Py > [K(H»lp---,1n~1,k)_K(11:12,---»1)]bilbi2"'bin_l . (13)

isigs iy =1
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As we shall show later on, the solution b, of the recur-
sion relation at large k, has algebraic k dependence, i.e.,

b,~Bk™", ko . (14)

This relation defines the 7 exponent obtained from the re-
cursion relation, which is the quantity of main interest in
this work. Notice that the exact solution (9) in nongel-
ling systems (A<n —1) corresponds to an infinite sol
mass, and therefore is physically unacceptable. However,
asymptotic solutions of the form (14) could be physically
acceptable in nongelling systems, because c;(t)/c(?)
may approach b, nonuniformly in &k, so that
> ke (t)=1, whereas 3 ; kb, — o since 7<2.

As a criterion to decide whether asymptotic solutions
b, of form (8) can be determined from recursion relation
(13), we use the results from the scaling function method.
The most important results of the scaling theory are
o(x)~exp( —x "Iy (x >0) for class III systems (u<0),
and ¢(x)~x"" (x —0) for class I and class II systems.
These results imply that class III systems do not admit
solutions, satisfying Eq. (8), because c;(2)/c(t)—
(t— o0; k,j fixed, but large), whereas class I and class II
J

1 -]

E,=lim ——— K(iy,iy, ...
ke (n—1), E,. _,
12522000 n—1
-1 s Ky, iy 1k )b, b
(n_l)!ii . - 19629« == én—10 iy
[ELPIRRRE n—1

where it is assumed that the infinite sums converge.

’in'—l’k)cil(t)ciz(t) e

i

systems admit such solutions since ¢ (#)/c(¢)
~(j/k)"=const (t— oo; k,j fixed, but large). It should
be noticed that if the k and ¢ dependence of ¢, (¢) cannot
factorize completely, one has, in general.

Vk(t):Ck(t)/Cl(t) .

If this is the case, it has been shown that the class II sys-
tems do not admit solutions that satisfy the recursion re-
lation [8].

III. ASYMPTOTIC SOLUTIONS
FROM THE RECURSION RELATION

In this section we show that for nongelling models
(A<n—1) of class I (#>0) and class II (x=0) systems,
the limiting ratio b, =lim,_, ¢, /c, satisfies the recursion
relation (13) provided that b, satisfies the strict inequali-
ties

E, <E <, k=2,3,.., (15)

where E;, is defined by

¢, (O/cy ()"}

b, (16)

n—1

In order to show that GSE reduces to the recursion relation (13) as £ — o, we introduce

1 [eo]
=0y 2

Cigigs iy =1

K(il)i2’ . e

and
Se=[dr o, ().
Substituting Egs. (17) and (18) into GSE (6) yields

et =expl =5,(D] [, (O)+ [dr—- 3

B i+ i, =

’ln-—l’k)cilci?_ e

K(il’iZ’ c ey
k

17

(18)

i) (te, (¢) - - ¢, (1)exp[Se(#)] | . (19)

The long-time behavior of Sy (¢) can be determined from c,(¢) (¢ — « ), which is given by Eq. (6) for k =1

¢ty=—cio=—clE;, t—w ,

(20)

provided that E; < . Thus, from Egs. (17) and (18) we find, for t — 0,

E;

ty~c"E ~—
sl B> g

Sk(t)z (t) N

— 7k in
(n —1)E,

(21)

(22)

provided that E; < co. With the help of Egs. (21) and (22), the dominant large-time behavior of the ¢ integral in Eq. (19)
can be estimated as ¢t ~** with a(k)=1/(n —1)(1—E, /E,). The integral diverges as t — o since E; >E;. Thus,
¢ (0) may be neglected in Eq. (19) and the equation reduces to the large-time form
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t., 1 .. . ' ’ '
bic,(t)exp[S,(t)]= fodt P > . K(tl,tz,...,z,,)c,-l(t)ciz(t )-~~c,-n(t Jexp[ S, (¢)] . (23)
iptiyt.6.+i =k
Differentiating Eq. (23) with respect to ¢ leads to
. 1 . .
bk(akcl+cl)2F_ ' > ' K (iy,iy,.0,)e; (e, (8) -+ - ¢; (2) . (24)
Ciptiyt e i =k

By using Egs. (8), (20), (21), and (22), we obtain

Bk(Ek—E1)=—1‘- > K(il,iz,...,in)b,-lb- by, (25)

B iyt i, =k

which is in fact the recursion relation (13), R (b, )=0 with b, =1.
In order to determine the asymptotic solution of the recursion relation, we multiply Eq. (13) with k, and sum over k,

and then we obtain

ESh=—te3s 3 s

ji=1 ) i\ =liy=k—i +1 i, =k—ij—i,—

In nongelling class I and class II systems, one finds a consistent solution only if 7 <2 is assumed.

tuting Eq. (14) into Eq. (26), one has

i K(ijyigy ... ig)b; b, ++-b;

ol Iyt

(26)

c—ip 1

In this case, by substi-

BEIkZ_T/(Z_T)Zﬁfoldxl fol“xldxz o fol— —xy— _x"_zdx,,_l

K(x,xp, .. .ox_p,1=x;—%x5 - —x, _ Nxyxy - x,_ 1) (1—x;,—x,—k x, )7 (27)
Comparison of the dominant orders in k gives

T=1+A/(n—1), (28)

which is in agreement with the prediction from the scaling function method [11], and consistent with the assumption

(15), i.e., Ek < o0,

Now we turn to the gelling systems. Since we are interested in the long-time behavior of the cluster size distribution

ci(t), we are necessarily dealing with the postgel solutions.
M® (k— o) transferring clusters with sizes smaller than k to those with sizes larger than k, as k — .

In gelling systems there is a nonvanishing mass flux
In this

transfer of sol particles into gel, the mass flux is found to be [10]

)

koo i =1iy=k—i +1 iy =k=i —i,—

M(oo)(

i1

ilK(il’i27“‘7in)ci Ci "¢ . (29)

1 %2 n

It must be finite and nonvanishing for all ¢ >¢_, where ¢, is the gel point. This means that ¢, (z) must have an algebraic

decay at large k, i.e., ¢ (t)=~ A(t)k " (k — o). Thus,

l:c1

M(oo) )____A hmkn+1+)» nr_24 f lf

is bounded and nonzero only if

_Atn+1
-

(3D

It is easy to verify that the result in Eq. (31) can also be
obtained from the recursion relation method. Therefore,
we conclude that for gelling systems of class I and class II
kernels, two methods give rise to the same results.

IV. SUMMARY AND REMARKS

In the previous discussion we proposed that as long as
the k and ¢ dependence of the cluster size distribution
¢, (t) can factorize at large time, then the recursion rela-
tion can be used to the large-time behavior, and the re-

—X Xy —

-1
.« .. -T
dxan(x,,xz,...,xn)(xlxz x,)

(30)

I
sults from the recursion relation method and scaling
function method are complementary for class II systems.

Now we demonstrate that the conclusion =74 is self-
consistent within the scaling theory of the Smoluchovski
equation, where 7=2—p, /w is obtained from the scaling
function method, and 7g =1+A/2, is obtained from the
recursion relation method. Consider the following mo-
ment equation for scaling function ¢(x).

[ 7dx [ Ty K(x,p)p(x)6()
X[x*+y*—(x+y)*], (32)

(1—ap,w=

where the ath moment is defined by

= [ Tdx x¢(x) . (33)



Without actually solving the integral equation for the
scaling function ¢(x) and calculating the moments, we
can determine the upper and lower bounds on .

Since the expression of the exponent 7 is the same from
two different methods, for class I systems we, therefore,
restrict ourselves to the class II systems. As an example
of a class II kernel, let us consider K (i,j)=(i +j)* with
A <1. An upper and lower bound on p, can be obtained
as follows. For A <1 and x,y positive, one has

x)‘+y">(x +y)}‘ s

so that
A2 2
x*yr—(x +yt< (x"ty7) (J:+y)
(x +y)
_ 2x Myt x4yt —(x +y)**
(x +p)* (x +y)*

When A > 1 one has
(x +y)—(xP+p?)> (22 —2)(xp)* .
Thus, if A =1, we have following inequalities
222—2M)(xy)Mx +y) A< xP+yr—(x +y)P
<2(xy)Mx +y)7H, (34)
and if ; <A <1, then
222 —2M)(xpMx +y) A <xP+pr—(x +p)*
<2(2=2" D) (xp)Mx +p)7H.
(35)

Substituting these inequalities into the moment Eq. (32)
yields

2271 2—2Mp? <(1—A)pw <p}, O0<A=1 (36)

and
221 (2—2Mp? <(1—A)pw <(2—222"1)p?, L<a<l.
37
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Thus, one finds that p, must satisfy the following ine-
qualities:

1—A
1—A<p) /W< —S—"F—"— 38
Py ZA_I(Z_ZA) (38)
for 0<A =1, and
1—A 1—A
ST <Pk/w<—_—_2x—1(2__2x) (39)
for £ <A <1. From our conjecture it follows that
pr/w=1—A/2. (40)

It is an easy matter to verify that Eq. (40) satisfies the ine-
qualities (38) and (39) for all A<1. So we argue that at
least for factorizable c,(¢), the class II systems can be
studied from the recursion relation method and 7=174.

In summary, we have studied the large-time properties
of n-tuple coagulation process for specific homogeneous
reaction kernel defined by Eq. (7). We found that if the k
and ¢ dependence of the cluster size distribution ¢, (¢) can
factorize, the long-time behavior of ¢, (?) can be deter-
mined from the recursion relation, derived from GSE.
We have also studied the complementary property of the
scaling function method with the recursion relation
method for class II systems. We show that the conjecture
T=7g is consistent with the prediction of scaling func-
tion theory, for factorizable class II systems. It, however,
is worthwhile to stress that if ¢; (¢) cannot factorize into k
and t dependence, 7 is, in general, not equal to 75, as has
been shown in Ref. [8].

As far as the properties of n-tuple coagulation process-
es are concerned, it should be noticed that, only the sim-
plest type of coagulation kernels have been discussed in
this work. A general classification of the multipolymer
coagulation is expected to be much involved, due to the
diverse coagulation kernels. The large-time behavior of
n-tuple coagulation process for more complicated reac-
tion kernels will be discussed in a future work [12].
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